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A B S T R A C T   

Disinfectant quaternary ammonium compounds (Quats) have diverse uses in a variety of consumer and com-
mercial products, particularly cleaning products. With the emergence of the COVID-19 pandemic, they have 
become a primary tool to inactivate the SARS-CoV-2 virus on surfaces. Disinfectant Quats have very low vapor 
pressure, and following the use phase of the products in which they are found, disposal is typically “down-the- 
drain” to wastewater treatment systems. Consequently, the potential for the greatest environmental effect is to 
the aquatic environment, from treated effluent, and potentially to soils, which might be amended with waste-
water biosolids. Among the earliest used and still common disinfectant Quats are the alkyl dimethyl benzyl 
ammonium chloride (ADBAC) compounds and the dialkyl dimethyl ammonium chloride (DDAC) compounds. 
They are cationic surfactants often found in consumer and commercial surface cleaners. Because of their biocidal 
properties, disinfectant Quats are heavily regulated for human and environmental safety around the world. 
Consequently, there is a robust database of information regarding the ecological hazards and environmental fate 
of ADBAC and DDAC; however, some of the data presented are from unpublished studies that have been sub-
mitted to and reviewed by regulatory agencies (i.e., EPA and European Chemicals Agency) to support antimi-
crobial product registration. We summarize the available environmental fate data and the acute and chronic 
aquatic ecotoxicity data for freshwater species, including algae, invertebrates, fish, and plants using peer- 
reviewed literature and unpublished data submitted to and summarized by regulatory agencies. The lower 
limit of the range of the ecotoxicity data for disinfectant Quats tends to be lower than that for other surface active 
agents, such as nonionic or anionic surfactants. However, ecotoxicity is mitigated by environmental fate char-
acteristics, the data for which we also summarize, including high biodegradability and a strong tendency to sorb 
to wastewater biosolids, sediment, and soil. As a result, disinfectant Quats are largely removed during waste-
water treatment, and those residues discharged in treated effluent are likely to rapidly bind to suspended solids 
or sediments, thus mitigating their toxicity.   
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1. Introduction 

Quaternary ammonium compounds (Quats) are cationic substances 
that have diverse uses in a variety of consumer and commercial prod-
ucts, such as pesticides, including herbicides and antimicrobial cleaning 
products (Bureš, 2019). Surface-active Quats have a hydrophilic head 
that imparts antistatic properties that have made them popular in fabric 
softeners, antistatic fabric sprays, and hair conditioners (Boethling and 
Lynch, 1992; Kaj et al., 2014). An additional important function is the 
natural antimicrobial activity that certain Quats impart. Disinfectant 
Quats interact with the cytoplasmic membrane of bacteria and yeast, 
and their membrane surface activity also makes Quats effective against 
viruses and spores (Gerba, 2015). However, the nonspecific nature of the 
antimicrobial mechanism of action of disinfectant Quats makes resis-
tance to them unlikely (Gerba, 2015). 

Disinfectant Quats have been identified as being effective against 
Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV; 
Rabenau et al., 2005; Jansen, 2020; Ijaz et al., 2020). The United States 
Environmental Protection Agency (EPA) has identified Quats among the 
surface disinfectants for use against SARS-CoV-2, the virus responsible 
for the 2019 novel coronavirus outbreak, first identified in Wuhan, 
China (i.e., COVID-19; USEPA, 2020). In addition, benzalkonium chlo-
ride is among the active ingredients currently permitted for use as an 
active ingredient in hand sanitizers in the United States (FDA, 2019). 
Similarly, in Europe, disinfectant Quats are among the active ingredients 
for which use in disinfectant products for human hygiene and surface 
disinfection is under consideration; approval has been granted for use as 
a wood preservative. 

In Europe, antimicrobial agents are regulated as biocides by the 
European Chemicals Agency (ECHA) under the Biocidal Products 
Regulation (BPR; European Union Regulation 528/2012). The BPR re-
quires that biocidal products receive an authorization before they can be 
placed on the market in Europe, which necessitates that all active sub-
stances within those products be approved for use. As part of that 
approval process, ECHA conducts a quantitative estimation of the 
environmental risk of a substance by comparing compartmental pre-
dicted environmental concentrations (PECs) to concentrations at which 
unacceptable effects on organisms will most likely not occur (aka pre-
dicted no effect concentration [PNEC]); this also includes an assessment 
of food chain accumulation and secondary poisoning (ECHA, 2017). In 
addition, there is a hazard assessment, which involves the identification 
of the potential for a substance to persist in the environment (P), 
accumulate in biota (B), and be toxic (T) combined with an evaluation of 
sources and major emissions (i.e., a PBT assessment). 

The BPR classifies products into 22 biocidal product types for use- 
specific assessment, grouped in four main areas: disinfectants, pre-
servatives, pest control, and other biocidal products, which include 
antifouling products and embalming fluids. One notable difference be-
tween regulation of antimicrobial products in Europe and the United 
States is that applied antimicrobial products are regulated in Europe 
under BPR regardless of whether the product is applied to surfaces, to 
human skin, or for any other purposes. In the United States, antimi-
crobial products that are intended for use on humans or animals are 
regulated as drugs or animal drugs, respectively, by the U.S. Food and 
Drug Administration under the Federal Food, Drug, and Cosmetic Act, 
and antimicrobial products intended to control pests on inanimate ob-
jects or plants are regulated by EPA under the Federal Insecticide, 
Fungicide and Rodenticide Act (FIFRA). Similar to the BPR, FIFRA- 
regulated antimicrobial pesticide products must be registered with 
EPA, which requires that data be provided to demonstrate antimicrobial 
efficacy and the absence of unreasonable adverse effects to human 
health and the environment. Among the earliest used disinfectant Quats 
are the alkyl dimethyl benzyl ammonium chloride (ADBAC) compounds 
and the dialkyl dimethyl ammonium chloride (DDAC) compounds. 
ADBAC was first registered as an active antimicrobial ingredient in the 
United States in 1947 (USEPA, 2006a) and DDAC in 1962 (USEPA, 

2006d). The most recently completed review of registration eligibility 
for ADBAC and DDAC in the U.S. by EPA was in 2006, with the agency 
specifying the uses that are eligible for reregistration (USEPA, 2006a,d). 

For purposes of risk assessment, EPA has grouped Quats into four 
clusters (USEPA, 1988). The Group I Quat cluster is composed of alkyl or 
hydroxyalkyl substituted Quats, Group II contains non-halogenated 
benzyl substituted Quats, Group III consists of di- and tri-chlorobenzyl 
substituted Quats, and Group IV is made up of Quats with unusual 
substituents (i.e., charged heterocyclic ammonium compounds). This 
assessment focuses on the ecological hazards and environmental fate of 
Group I and Group II Quat clusters, which are frequently used as active 
ingredients in consumer and commercial antimicrobial products. Group 
I Quat is dominated by didecyl (C10) dimethyl ammonium chloride 
(7173-51-5), dioctyl (C8) dimethyl ammonium chloride (5538-94-3), 
and mixtures of the two compounds (USEPA, 2006b, Fig. 1A). Group II 
Quat is composed of 18 unique Chemical Abstracts Service Registry 
Numbers (CASRNs) (Table 1, Fig. 1B), which were identified in the 
Reregistration Eligibility Decision (RED) for ADBAC (USEPA, 2006a) 
and the ADBAC Final Work Plan for Registration Review (USEPA, 2017). 

As part of the registration process in the United States and Europe, 
regulatory agencies solicit submission of ecological toxicity and envi-
ronmental fate and transport data from manufacturers of antimicrobial 
active ingredients and formulated antimicrobial products, and from 
other stakeholders. The majority of submitted studies are unpublished 
reports that have been prepared by independent laboratories. Key 
studies used by regulatory agencies for determining product safety 
adhere to guidelines established by EPA’s Office of Pollution Prevention 
and Toxics and/or by the Organisation for Economic Co-operation and 
Development (OECD), and are Good Laboratory Practice-compliant. 
However, submitted study reports typically are not published in peer- 
reviewed scientific journals, and are presented in a format specifically 
for regulatory decision-making, which may not be well understood by 
the public. Consequently, this could lead to the possible misconception 
that the safety of ADBAC, DDAC, and other Quats have not been 
adequately assessed. To summarize the regulatory findings in a context 
that is more consistent with that of the broader scientific community, we 
conducted an assessment of the ecotoxicological hazards and environ-
mental fate of ADBAC and DDAC using available peer-reviewed litera-
ture and publicly available summaries of unpublished data submitted to 
and reviewed by regulatory agencies.1 The original study reports cited in 
those regulatory reviews are not available for public examination. 
However, it is important to note that those full study reports are pro-
vided to competent authorities in Europe (ECHA) and the United States 
(EPA), which critically review them and incorporate that information 
into their findings to permit or restrict those chemicals onto the market. 

2. Distribution in the environment 

As previously noted, the major use pattern of disinfectant Quats in 

Fig. 1. Chemical structures of (A) C10 DDAC (CASRN 7173-51-5) and (B) 
C12–C16 ADBAC (CASRN 68424-85-1), which is a formulation in which R 
equals alkyl chains of 12 (40%), 14 (50%), or 16 (10%) carbons in length. 

1 The unpublished study reports in the reference list were not available for 
review. Only summary information as provided in the publicly available reg-
ulatory evaluations were assessed. 
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the United States is as the active antimicrobial ingredient in consumer 
and institutional cleaning products. Following the use phase of these 
products, disposal is typically “down-the-drain” to wastewater treat-
ment systems (Boethling and Lynch, 1992). In addition, vapor pressures 
are extremely low: 3.53 × 10− 12 mm Hg (4.7 × 10− 10 Pa) for ADBAC 
(USEPA, 2006a) and 2.33 × 10− 11 mm Hg (3.1 × 10− 9 Pa) for DDAC 
(USEPA, 2006d). Therefore, disinfectant Quats are not expected to 
volatilize significantly from soil or water (Boethling and Lynch, 1992). 
Consequently, the potential for greatest environmental effect is to the 
aquatic environment, from treated effluent, and potentially to soils, 
which might be amended with biosolids from wastewater treatment 
systems (Fig. 2). 

Therefore, the most relevant compartments for the examination of 
the fate of antimicrobial Quats are centralized wastewater treatment 
facilities, surface waters, and associated sediments and soils amended 
with biosolids. Sorption and biodegradation are two mechanisms that 
greatly affect the fate of disinfectant Quats in various environmental 
compartments (Zhang et al., 2015). The Quats have strong affinity for 
sewage sludge, sediments, and soils, and there is evidence of rapid 
biodegradation in conventional wastewater treatment systems, aquatic 
systems, and soils. 

2.1. Fate in wastewater treatment systems 

Boethling and Lynch (1992) observed that removal of Quats from 
acclimated activated sludge wastewater treatment systems should 
generally exceed 90% with a high degree of biodegradation. A study 
submitted in support of the registration of ADBAC in Europe reported a 
very high level of removal of C12–16ADBAC in a continuous activated 
sludge test (OECD 303 A; ECHA, 2015a). Similarly, ECHA (2015b) 
concluded that DDAC is removed from wastewater at very high per-
centages (>99.99%), based on data from a continuous activated sludge 

test (OECD 303 A), and that the primary mechanism for removal is 
biodegradation. Clara et al. (2007) observed removal of 98% or greater 
for C10DDAC and C12–16ADBAC by municipal wastewater treatment fa-
cilities with conventional secondary activated sludge technology in 
Austria, noting that 80% or greater was removed via biotransformation. 

2.2. Sorption 

ADBAC and DDAC have a tendency to strongly adsorb to soils due to 
their cationic charge (ECHA, 2015a,b). Data from adsorption/de-
sorption studies confirm that ADBAC and DDAC are immobile in soil and 
have high partition coefficients (Table 2a,b). 

Because of their strong adsorption to soils, ADBAC and DDAC are not 
expected to migrate in subsurface environments and have low potential 
to leach into surface water and groundwater (ECHA, 2015a,b). 

2.3. Degradation in the environment 

2.3.1. ADBAC 
Based on experimental data submitted to support registration in the 

United States and Europe, ADBAC was found to be hydrolytically stable 
under abiotic and buffered conditions over the pH range 5–9 (ECHA, 
2015a; USEPA, 2006b). ADBAC is also photostable in pH 7 buffered 
aqueous solutions; however, in the presence of a photosensitizer, 
ADBAC has been shown to degrade, with a half-life of 7.1 days (USEPA, 
2006b). 

There are several reliable studies where the aerobic biodegradation 
of ADBAC was investigated; summaries are provided by TRS (2011). A 
28-day Closed Bottle Test (OECD 301D) using a sewage treatment plant 
inoculum reported between 82% and 85% degradation of ADBAC in 28 
days and concluded that ADBAC is ultimately biodegradable (Corby, 
1992, as cited in TRS, 2011); that is, complete mineralization of at least 

Table 1 
Chemical compounds in the Group II Quat cluster (USEPA, 2006a).  

CASRN Chemical Name Chain Lengths 

121-54-0 Diisobutylphenoxyethyoxyethyl dimethyl benzyl ammonium chloride 
[Benzethonium chloride] 

N/A 

1330-85-4 Dodecyl benzyl trimethyl ammonium chloride N/A 
139-08-2 Alkyl dimethyl benzyl ammonium chloride (ADBAC) R = C12 (1%) C14 (98%) C16 (1%) 
1399-80-0 Methyl dodecyl benzyl trimethyl ammonium chloride – 80% 

Methyl dodecyl xylene bis-trimethyl ammonium chloride – 20% 
N/A 

25155-18- 
4 

Diisobutyl cresoxyethoxyethyl dimethyl benzyl ammonium chloride monohydrate N/A 

53516-75- 
9 

n-Alkyl dimethyl 1-naphthylmethyl ammonium chloride R = C12 (98%) C14 (2%) 

53516-76- 
0 

Alkyl dimethyl benzyl ammonium chloride (ADBAC) R = C12 (5%) C14 (60%) C16 (30%) C 18 (5%) 

61789-71- 
7 

Alkyl dimethyl benzyl ammonium chloride (ADBAC) R = C8-10 (2.5%) C14 (61%) C16 (23%) C18 (2.5%) 

63449-41- 
2 

Alkyl dimethyl benzyl ammonium chloride (ADBAC) R = C8 – Not specified C10 – Not specified C12 (67%) C14 (25%) C16 (7%) C18 
– Not specified 

68391-01- 
5 

Alkyl dimethyl benzyl ammonium chloride (ADBAC) R = C12 (67%) C14 (25%) C16 (7%) C18 (1%) 
R = C12 (61%) C14 (23%) C16 (11%) C18 (5%) 

68424-85- 
1 

Alkyl dimethyl benzyl ammonium chloride (ADBAC) R = C12 (40%) C14 (50%) C16 (10%) 
R = C12 (25%) C14 (60%) C16 (15%) 
R = C12 (14%) C14 (58%) C16 (28%) 
R = C12 (65%) C14 (25%) C16 (10%) 
R = C12 (3%) C14 (95%) C16 (2%) 
R = C12 (5%) C14 (90%) C16 (5%) 

68989-01- 
5 

Alkyl dimethyl benzyl ammonium (ADBA) saccharinate R = C12 (40%) C14 (50%) C16 (10%) 

73049-75- 
9 

Dialkyl dimethyl benzyl ammonium chloride (BAC) R = C12 (5%) C14 (60%) C16 (30%) C18 (5%) 

8001-54-5 Alkyl dimethyl benzyl ammonium chloride (ADBAC) R = C12 (50%) C14 (30%) C16 (17%) C18 (3%) 
8045-21-4 Alkyl (ethylbenzyl) dimethyl ammonium chloride (ADEBAC) R = C12 (50%) C14 (30%) C16 (17%) C18 (3%) 
85409-22- 

9 
Alkyl dimethyl benzyl ammonium chloride (ADBAC) R = C12 (70%) C14 (30%) 

85409-23- 
0 

Alkyl (ethylbenzyl) dimethyl ammonium chloride (ADEBAC) R = C12 (68%) C14 (32%) 

N/A n-alkyl dimethyl dimethyl ammonium chloride R = C12 (68%) C14 (32%)  

P.C. DeLeo et al.                                                                                                                                                                                                                                
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60% of the test substance to CO2, biomass, water, and other inorganic 
substances like NH3 (OECD, 2006). An aerobic biodegradability study 
using the CO2 evolution similar to the OECD 301 B guideline reported 
72% of the C12–C18ADBAC had degraded over 28 days (Bazzon and 
Deschamps, 2002, as cited in TRS, 2011). The authors concluded that 
the test substance was readily biodegradable; that is, it degrades quickly 

(passing the 10-day window requirement) and completely (60–100%) 
within 28 days (OECD, 2006). Another study following the OECD 301 B 
guideline reported 95.5% degradation of C12–C18ADBAC in 28 days 
(Van Dievoet and Bouillon, 2005, as cited in TRS, 2011; ECHA, 2015a). 
Two studies using the semicontinuous activated sludge test method 
report very high removal, 94% and 100%. However, it is not clear 
whether the mechanism of removal was degradation or sorption because 
CO2 evolution was not measured and Quats commonly sorb to sewage 
sludge (Madsen et al., 2001). Van Ginkel (1995) summarized the work of 
Masuda et al. (1976) studying the biodegradability of individual ADBAC 
compounds using the Standard MITI test method. Biodegradation rates 
of 79%–95% were found for C8, C10, C12 and C14 ADBAC. However, 
there was virtually no biodegradation of C16 ADBAC (5%) and C18 
ADBAC (0%). Van Ginkel attributes the “discrepancies” in biodegrada-
tion rates to the inhibitory effect of the quaternary ammonium salts on 
the inoculum used in the test method. 

Mackrell and Walker (1978) proposed several mechanisms of aerobic 
degradation for Quats including cleavage of the C–N bond followed by 
β-oxidation of the alkyl side chain; activation of the terminal methyl 
group by ω-oxidation followed by β-oxidation of the alkyl side chain, and 
cleavage of the aromatic ring for benzalkonium Quats. Tezel et al. 
(2012) report biotransformation of ADBAC compounds beginning with 
cleavage of the Calkyl–N bond and formation of benzyldimethylamine. 

ADBAC is not generally found to be degradable under anaerobic 
conditions. An anaerobic aquatic metabolism study conducted over 12 
months reported very little degradation of the radiolabeled ADBAC test 
substance; mean recovery of the test substance at the end of the study 
was almost 95% (USEPA, 2006b). 

2.3.2. DDAC 
Based on experimental data submitted to support registration in the 

United States and Europe, DDAC was found to be hydrolytically stable 
under abiotic and buffered conditions over the pH range 5–9 (ECHA, 
2015b; USEPA, 2006c). DDAC is also photostable in pH 7 buffered 
aqueous solutions, even in the presence of a photosensitizer (USEPA, 

Fig. 2. Primary pathways for entry of antimicrobial Quats to the environment.  

Table 2a 
Partition coefficients for ADBAC in certain soils and sediments (USEPA, 2006a; 
ECHA, 2015a).  

Soil Type Ka (adsorption) 
(L/kg) 

Koc (mobility) 
(L/kg) 

Kdes (desorption) 
(L/kg) 

Kdoc (mobility) 
(L/kg) 

Sand 6172 6,171,657 7173 7,137,310 
Loamy sand 1543 16,679 6795 73,459 
Sandy loam 5123 640,389 96,540 12,067,457 
Loam 630 18,251 2828 81,971 
Silt loam 10,797 2,159,346 14,083 2,816,590 
Silt loam 2032 812,943 2778 1,111,200 
Clay loam 32,429 1,663,039 165,556 8,490,062  

Table 2b 
Partition coefficients for DDAC in certain soils and sediments (USEPA, 2006d; 
ECHA, 2015b).  

Soil/Sediment 
Type 

Ka 

(adsorption) 
(L/kg) 

Koc 

(mobility) 
(L/kg) 

Kdes 

(desorption) 
(L/kg) 

Kdoc 

(mobility) 
(L/kg) 

Sand 1095 437,805 591 236,473 
Loamy sand 1787 40,339 2387 53,883 
Sandy loam 8179 908,757 2074 230,498 
Loam 1456 43,855 2117 63,765 
Silt 2188 160,882 3161 232,426 
Silty clay loam 32,791 1,599,564 8309 405,328 
Silt loam 30,851 1,469,081 7714 367,334 
Silt loam 2868 120,000 4237 177,280 
Clay soil 9230 280,547 3718 113,009  
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2006c). 
DDAC is generally considered to be biodegradable under aerobic 

aquatic conditions (Zhang et al., 2015). A number of guideline studies 
demonstrating the biodegradability of DDAC have been submitted to 
authorities in Europe and the United States to support its registration 
(USEPA, 2006c,d; ECHA, 2015b). DDAC meets the criteria for readily 
biodegradability, with greater than 70% degradation observed in 28 
days (Downing, 1993; Schaefer, 1996; Hirshen et al., 1998; Fiebig, 2006, 
as cited in ECHA, 2015b). The criteria for inherent biodegradability 
were also satisfied by a study using the OECD 302 B guideline that 
observed 87%–94% degradation after 28 days (Hirshen et al., 1998, as 
cited in ECHA, 2015b). One study reporting results for two DDAC test 
compounds did not meet the 10-day window for readily biodegrad-
ability but did show high ultimate biodegradability (>80% in 28 days), 
suggesting limitations with the implementation of the test procedure 
(Gledhill, 2006, as cited in USEPA, 2006c). Additional data from an 
activated sludge die away test showed >90% degradation by virtue of 
CO2 evolution (Schaefer, 2001, as cited in ECHA, 2015b). 

Nishihara et al. (2000) proposed a biodegradation pathway for 
DDAC involving an N-dealkylation process that yields decyldimethyl-
amine which is further dealkylated to dimethylamine (DMA). The 
resultant decanal/decanoic acid and DMA are labile to complete 
mineralization to CO2 and water. 

Data are very limited regarding potential biodegradation in soil and 
sediment. One aerobic soil metabolism study found DDAC to be stable, 
with very little degradation over 365 days (Cranor, 1991, as cited in 
USEPA, 2006c; ECHA, 2015b). Another study evaluating the potential 
transformation in aquatic sediments using a method consistent with 
OECD 308 found that DDAC rapidly partitioned to sediments and was 
stable in the sediments over the 120-day test period (de Vette et al., 
2000, as cited in ECHA, 2015b). Given the robust mineralization 
observed under the stringent conditions of the ready biodegradation 
tests and the high removal in sewage treatment plants, this lack of 
biodegradation, even primary biodegradation, in these studies is sur-
prising. It may be that the aerobic conditions were not maintained in 
these older tests. Further clarification of the behavior of these substances 
in soil and sediment according to current environmental fate guidelines 
is needed. 

3. Ecotoxicity 

Ecotoxicity studies for ADBAC and DDAC compounds were identified 
from a variety of sources, including hazard and risk assessments con-
ducted by authoritative agencies. Authoritative documents that were 
reviewed include 1) the RED for Alkyl Dimethyl Benzyl Ammonium 
Chloride (USEPA, 2006a); 2) the RED for Aliphatic Alkyl Quaternaries 
(USEPA, 2006d); 3) the Ecological Risk Assessment in Support of the 
Antimicrobials Division’s Reregistration of ADBAC and DDAC (USEPA, 
2006e); 4) the Ecological Hazard and Environmental Risk Assessment 
Chapter Alkyl Dimethyl Benzyl Ammonium Chloride (USEPA, 2006f); 5) 
the Directive 98/8/EC Assessment report for ADBAC and DDAC (ECHA, 
2015a,b); and 6) the ADBAC Category, High Production Volume (HPV) 
Chemicals Challenge, Final Test Status and Data Review (TRS, 2011). In 
addition, we searched the EPA ECOTOXicology knowledgebase data-
base (USEPA, 2019a), the EPA Pesticide Ecotoxicity Database (USEPA, 
2019b), and the Health and Environmental Sciences Institute (HESI) 
EnviroTox Database (HESI, 2019) for ecotoxicity data via CASRN. Data 
were identified for ADBAC and DDAC compounds listed in Table 3 and 
were reviewed collectively for each group regardless of CASRN. 

Ecotoxicity data for ADBAC compounds are available for 29 fresh-
water species for various trophic groups, including algae, fish, in-
vertebrates, and aquatic plants. A total of 537 data points were 
identified stemming from studies investigating acute and chronic 
toxicity. 

Ecotoxicity data for DDAC compounds are available for 16 fresh-
water species for various trophic groups, including algae, fish, and 

invertebrates. A total of 194 data points were identified stemming from 
studies investigating acute and chronic toxicity. 

There are more reported freshwater ecotoxicity data for ADBAC 
compounds than DDAC compounds. The taxa most commonly used for 
ABDAC and DDAC compounds, from highest to lowest, are fish > in-
vertebrates > algae > plants, and fish > invertebrates > algae, respec-
tively. Freshwater species vary considerably between studies for each 
compound. In the assessment review, data are considered acute if they 
are described as such in the study, if the endpoint is presented as a 50% 
effective or lethal dose (EC50 or LC50), if the endpoint is presented as a 
90% effective dose (EC90), or if exposure duration is equal to or less 
than the recommended standardized test guideline. Data are considered 
chronic if they are described as such in the study, or if the endpoint is 
presented as a lowest-observed-effect-concentration, a no-observed- 
effect-concentration, a 10% effective concentration (EC10), or an ef-
fect that would influence the long-term well-being of a test species (25% 
reduction in a nonlethal endpoint [IC25]). Acute studies with lethality 
endpoints in fish are the most abundant sources of data for both ADBAC 
and DDAC compounds. 

There is considerable variability among the freshwater data ranges 
for acute and chronic trophic groups reviewed in this present study 
(Fig. 3; Table 4 and Table 5). 

The lowest effect concentration ranges are variable for ADBAC and 
DDAC compounds based on acute and chronic studies and trophic group. 
For example, the lowest effect concentrations for ADBAC and DDAC 
compounds observed for algae are similar (as low as 0.014 for acute and 
0.001 for chronic). However, ADBAC compounds have a lower observed 
effect concentration for invertebrates, whereas DDAC compounds have a 
lower observed effect concentration for fish. The highest effect con-
centrations are consistently observed in DDAC compounds across all 
trophic groups (as high as 38,000 mg/L in acute invertebrate studies). It 
is not clear whether these apparent differences are merely the result of 
greater testing of ADBAC given the diversity of that chemistry as noted 
in Table 1. 

4. Discussion 

Disinfectant Quats have been found to occur in a wide variety of 
environmental media, including surface waters, sediments, sewage, and 
sewage sludge (Zhang et al., 2015). Pati and Arnold (2020) recently 
observed disinfectant Quats at low levels in wastewater effluent (0.4 μg 
L− 1 to 6.6 μg L− 1) and sediments downstream from wastewater treat-
ment plant discharges (0.1 μg g− 1 to 4.5 μg g− 1) in Minnesota (U.S.A). 
These observations are expected because the life cycle of these com-
pounds typically results in their down-the-drain disposal, and while 
removal in wastewater treatment plants is high, it will not be complete. 

Table 3 
Data identified for ADBAC and DDAC compounds with the number of data points 
associated for each CASRN.  

Compound CASRN Data Points 

ADBAC 122-18-9 3 
139-07-1 14 
68,391-01-5 7 
121-54-0 40 
1330-85-4 7 
1399-80-0 19 
25,155-18-4 3 
53,516-76-0 7 
61,789-71-7 6 
63,449-41-2 106 
68,391-01-5 1 
68,424-85-1 122 
8001-54-5 201 
85,409-22-9 1 

DDAC 7173-51-5 179 
5538-94-3 12 
68,607-28-3 3  
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Fig. 3. Comparison of acute and chronic aquatic ecotoxicity data ranges of the disinfectant Quats (A) ADBAC and (B) DDAC from freshwater studies reviewed in the 
present assessment. Acute endpoints include 50% lethal (effective) concentrations and others (Supplemental Data). Chronic endpoints include lowest-observed-effect 
concentration, no-observed-effect concentration, 10% lethal concentration, and others (Supplemental Data). Number of freshwater data points used to calculate the 
mean for each type of study are given below the bars. Data have been logarithmically scaled. 
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There is a sizeable database available to consider potential ecotoxico-
logical effects, particularly to freshwater aquatic organisms, including 
algae, invertebrates, fish, and aquatic plants. For ADBAC, acute aquatic 
toxicity data range from 0.0056 mg/L (invertebrates) to 3880 mg/L 
(invertebrates), and chronic toxicity data range from 0.00006 mg/L 
(invertebrates) to 3880 mg/L (fish). The range of ecotoxicity data for 
DDAC is a bit broader, with acute aquatic toxicity ranging from 0.001 
mg/L (fish) to 38,000 mg/L (invertebrates), and chronic toxicity data 
ranging from 0.001 mg/L (algae) to 15 mg/L (fish). While the numerical 
range is broad, as Fig. 3 illustrates, the study results tend to cluster at 1 
or 2 orders of magnitude, and there appear to be outliers that expand the 
range of the data at both the low and high ends. 

The lower limit of the range of acute and chronic toxicity for cationic 
surfactants tends to be lower than that for other nonionic surfactants like 
alcohol ethoxylates (Belanger et al., 2006), and anionic surfactants such 
as alkyl sulfates (Könnecker et al., 2011), alkyl ethoxysulfates, and 
linear alkylbenzene sulfonates (Cowan-Ellsberry et al., 2014). The 

exception is long chain alcohols, for which the lower range of chronic 
aquatic ecotoxicity data is on the same order of magnitude as the 
disinfectant Quats (Cowan-Ellsberry et al., 2014). Jackson et al. (2016) 
review the marine ecotoxicity of several anionic, nonionic, and cationic 
surfactants; the cationic surfactants reviewed were C15–17 ditallow 
dimethyl ammonium chloride (DTDMAC) compounds. The authors 
conclud that the “marine data fall within typical freshwater data ranges, 
suggesting approximately equal sensitivity to freshwater species.” The 
acute and chronic marine ecotoxicity data for DTDMAC fell within the 
range for the other four surfactant classes reviewed (alcohol ethoxylates, 
alkyl ethoxysulfates, alkyl sulfates, linear alkylbenzene sulfonates). 

Gutsell et al. (2015) review data for a number of categories of 
chemicals to derive ecotoxicological thresholds of toxicological concern 
(ecoTTCs), including anionic, cationic, and nonionic surfactants. The 
median ecoTTC for nonionic surfactants was a factor of 14 greater than 
that for cationic surfactants, and the median ecoTTC for anionic sur-
factants was a factor of 26 greater than cationic surfactants. Roberts 
et al. (2013) discuss how cationic surfactants are generally more toxic 
than predicted by general narcosis or polar narcosis quantitative struc-
ture activity relationships (QSARs). They suggest that cationic surfac-
tants can partition into cell membranes more effectively than anionic or 
nonionic surfactants and are consequently more toxic. Nonetheless, the 
suggestion is that cationic surfactants impart toxicity through a narcotic 
(non-specific) mode of action (MOA). Further evidence of the MOA of 
cationic surfactants can be gathered through the HESI EnviroTox data-
base (Connors et al., 2019; http://www.envirotoxdatabase.org/). The 
database permits a Consensus MOA assessment for compounds for which 
it has data available (Kienzler et al., 2019). For ADBAC (CASRN 
68424-85-1), the EnviroTox database produces a Consensus MOA as 
narcotic with a confidence score of 1 (lowest). Among the four source 
MOA approaches used in the Consensus MOA approach are the EPA 
Toxicity Estimation Software Tool (TEST); EPA Assessment Tool for 
Evaluating Risk (ASTER); the OASIS MOA, which is currently utilized in 
the OECD QSAR Toolbox; and the Verhaar classification framework 
(Verhaar et al., 1992). For ADBAC, the individual results were narcosis 
(N), unknown/out of domain (U), narcotic amine (N), and class 5 (not 
possible to classify according to these rules) for TEST, ASTER, OASIS, 
and Verhaar, respectively (HESI, 2019). The results for DDAC (CASRN 
7173-51-5) were very similar—a Consensus MOA as narcotic with a 
confidence score of 1, and individual results of narcosis (N), 
unknown/out of domain (U), narcotic amine (N), and class 5 (not 
possible to classify according to these rules). 

Though the antimicrobial nature of disinfectant Quats may appear to 
be a negative attribute with respect to ecological hazard and risk, there 
are a number of favorable environmental fate attributes that mitigate 
those hazards and risks. For one, the high degree of aerobic biode-
gradability of ADBAC and DDAC, coupled with the strong tendency to 
sorb to sewage sludge (biosolids), contributes to the high degree of 
removal in wastewater treatment systems (Clara et al., 2007). Traces of 
the compounds that might be released to a receiving water body in 
treated wastewater effluent will partition to sediment and strongly sorb 
(Zhang et al., 2015). Similarly, disinfectant Quat residues in sewage 
sludge that may be applied to land will preferentially bind to the soil and 
may be unavailable to terrestrial organisms. Chen et al. (2014) 
demonstrated how in experimental systems, C12-BAC can bind to dis-
solved organic carbon, causing the level of freely available C12-BAC to 
be greatly reduced, and thus toxicity in the test system is greatly 
reduced. The authors conclud that the presence of dissolved or partic-
ulate matter in the water column can substantially attenuate the actual 
exposure concentration of cationic surfactants compared to the total 
extractable concentration of the test material. Likewise, NICNAS 
(2016a,b) notes that “[l]aboratory-derived toxicity values in clean test 
waters overestimate toxicity under environmental conditions as qua-
ternary ammonium surfactants sorb to suspended solids and have a 
tendency to form complexes with anionic surfactants in natural waters 
(de Oude, 1992). As a result, the bioavailable fraction of quaternary 

Table 4 
Summary of acute and chronic toxicity value ranges for ADBAC compounds.  

Trophic Level Test Type Concentration Range (mg/L) Reference 

Algae Acute 0.014–100 1 
Chronic 0.0012–10 

Invertebrate Acute 0.0056–3880 2 
Chronic 0.00006–5 

Fish Acute 0.064–1940 3 
Chronic 0.001–17.8 

Plant Acute 0.12–3.4 4 
Chronic 0.019–0.043 

Notes:1: Canton and Mathijssen-Spiekman (1983); ECHA (2015a); Fitzgerald 
and Faust (1963); Lusse et al. (1986); Mayer et al. (2001), as cited in TRS (2011); 
Nyberg (1988); TRS (2011); Utsunomiya et al. (1997); Wong and Wainwright 
(1994) 2: Canton and Mathijssen-Spiekman (1983); ECHA (2015a); HESI 
(2019); Huber et al. (1994); Jenkins (2007), as cited in TRS (2011); Lavorgna 
et al. (2015); Li (2008); Liao and Guo (1990); Liu et al. (2007); McIntyre and 
Pate (1992), as cited in TRS (2011); Oplinger and Wagner (2009a); Pate and 
McIntyre (1991), as cited in TRS (2011); TRS (2011); USEPA (2002, 2006f, 
2019b); Vallejo-Freire et al. (1954); Waller et al. (1996)3: Applegate et al. 
(1957); Bills et al. (1993); Bond et al. (1960); Bouck and Johnson (1979); Byrne 
et al. (1989); Canton and Mathijssen-Spiekman (1983); Ciereszko et al. (2004); 
Cope (1965); ECHA (2015a); HESI (2019); Holland et al. (1960); Hoskins and 
Dalziel (1984); Hughes (1973); Jones (1962); Krzeminski et al. (1977); MacPhee 
and Ruelle (1969); Mayer and Ellersieck (1986); McIntyre and Pate (1992b), as 
cited in TRS (2011); Oplinger and Wagner (2009b); Pate and McIntyre (1991), as 
cited in TRS (2011); Rodgers et al. (1951); Rucker (1948); Rucker and Whipple 
(1951); Surber and Pickering (1962); Sword and Stuerman (1994), as cited in 
TRS (2011); Tooby et al. (1975); USEPA (2002, 2006a,f); Willford (1966); 
Wright and Snow (1975)4: Desjardins et al. (2005), as cited in TRS (2011); 
Vervliet-Scheebaum et al. (2008); Walker and Evans (1978). 

Table 5 
Summary of acute and chronic toxicity values ranges for DDAC compounds.  

Trophic Level Test Type Concentration Range (mg/L) Reference 

Algae Acute 0.0142–3.6 1 
Chronic 0.001–0.1 

Invertebrate Acute 0.1–38,000 2 
Chronic 0.014–13.75 

Fish Acute 0.001–500 3 
Chronic 0.0322–15 

Notes: 1: Canton and Mathijssen-Spiekman (1983); ECHA (2015b); HESI (2019); 
Krueger et al. (2002), as cited in USEPA (2006g); Tatarazako et al. (2002); 
USEPA (2002, 2006e); Walker and Evans (1978)2: Bargar and Fisher (1997); 
Canton and Mathijssen-Spiekman (1983); ECHA (2015b); HESI (2019); Farrell 
et al. (1998); Tatarazako et al. (2002); USEPA (2002, 2006b, 2006e) 3: Bargar 
and Fisher (1997); Canton and Mathijssen-Spiekman (1983); ECHA (2015b); 
Farrell et al. (1998); ECHA (2015b); Johnston et al. (1998); Rhodes (2000), as 
cited in USEPA (2006g); USEPA (2002, 2006d, 2006e, 2019b); Waller et al. 
(1993). 
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ammonium surfactants in environmental waters is reduced by up to 95% 
(Landis et al., 1993). To correct for this reduction in bioavailability 
under environmental exposure conditions, the measured ecotoxicity 
endpoints in laboratory tests (generally conducted in clean synthetic test 
waters) can be multiplied by a maximum mitigation factor of 20 (Landis 
et al., 1993).” 

5. Conclusion 

Substantial data are available to characterize the ecotoxicological 
hazard and environmental fate of disinfectant Quats, particularly 
ADBAC and DDAC. Disinfectant Quats demonstrate greater aquatic 
toxicity than other anionic or nonionic surfactants but impart ecotox-
icity through a similar non-specific, narcotic MOA. The environmental 
fate of disinfectant Quats can also be characterized based on a wealth of 
available data. Though there are significant environmental hazards, 
those hazards are mitigated as a result of the typical conditions of use in 
products with a “down-the-drain” disposal. Disinfectant Quats are 
largely removed from wastewater through biodegradation and sorption 
to wastewater biosolids, and traces that may be discharged to surface 
water or soil will bind to sediment or soil and reduce the available 
exposure concentration to potential receptors. By one estimate, the 
bioavailable fraction of quaternary ammonium surfactants in environ-
mental waters is reduced by up to 95%. Consequently, numerous regu-
latory bodies around the world have affirmed the safety of disinfectant 
Quats under current use conditions, including use as an active antimi-
crobial ingredient in consumer and commercial cleaning products. 
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